E-ISSN: 2988-1986 https://ejournal.warunayama.org/kohesi

EVALUASI SIMPANG TAK BERSINYAL MENGGUNAKAN PTV VISSIM (STUDI KASUS : SIMPANG TIGA JALAN P.M NOOR DAN D.I JALAN PANJAITAN KOTA SAMARINDA)

La Karno

Universitas Muhammadiyah Kalimantan Timur e-mail: lakarnobuton@gmail.com

Abstrak

Simpang tiga bersinyal dibuat untuk meningkatkan kelancaran pergerakan dan mengurangi benturan atau konflik antara pengguna jalan. Namun banyaknya persimpangan di kota-kota besar seperti Samarinda dapat menimbulkan masalah tersendiri. Hal ini terjadi dijalan yang memiliki banyak titik pertemuan dan jarak yang pendek antar simpang Karena kendaraan selalu mendapat sinyal merah kendaraan kadang-kadang harus berhenti di setiap simpang. Ini pasti menyebabkan ketidak nyamanan bagi pengendara dan memakan waktu yang lebih lama untuk menunda Ini menyebabkan banyak kemacetan di persimpangan, terutama di waktu-waktu di mana banyak orang menggunakan jalan Ini adalah alasan penulis melakukan penelitian dengan judul "Evaluasi Simpang Tak Bersinyal dengan menggunakan PTV Vissim (simpang tiga Jalan P.M Noor dan Jalan DI Panjaitan kota Samarinda". PTV Vissim adalah aplikasi software yang memungkinkan lalu lintas awal menggunakan data yang dimasukan dan diproses untuk menghasilkan simulasi dan dievaluasi menggunakan data Vissim yang dibutuhkan termasuk volume lalu lintas, geometri persimpangan kecepatan kendaraan dan arah kendaraan. Tujuan penelitian ini adalah Menganalisis kemacetan yang sedang berlangsung Jalan P.M Noor dan Jalan DI panjaitan kota samarinda bedasarkan terhadap kapasitas, derajat kejenuhan (PKJI 2014) dan rekomendasi perbaikan infrakstruktur jalan,penerapan sinyal lalu lintas dan penambahan tanda-tanda lalu lintas yang dapat meningkatkan efisiensi kinerja ruas Jalan P.M Noor dan Jalan DI panjaitan kota samarinda.

Kata kunci: Simpang Tak Bersinyal, PKJI 2014, Aplikasih Software PTV Vissim

Abstract

Signalized intersections are made to improve smooth movement and reduce collisions or conflicts between road users. However, the number of intersections in big cities such as Samarinda can cause its own problems. This happens on roads that have many meeting points and short distances between intersections Because vehicles always get red signals, vehicles sometimes have to stop at each intersection. This definitely causes inconvenience for motorists and takes longer to delay It causes a lot of congestion at intersections, especially at times where many people use the road, such as morning, noon, and evening Therefore This is the reason why the author conducted a study with the title "Evaluation of Unsignalized Simpang using PTV Vissim (junction three of Jalan P.M Noor and Jalan DI Panjaitan of Samarinda city". *PTV Vissim* is a software application that allows initial traffic to use the data entered and processed to generate simulations and evaluate using the required

Article History

Received: September 2024 Reviewed: September 2024 Published: September 2024

Plagirism Checker No 234 Prefix DOI: Prefix DOI: 10.8734/Kohesi.v1i2.365

Copyright : Author Publish by : Kohesi

This work is licensed under a <u>Creative Commons</u>
<u>Attribution-NonCommercial</u>
4.0 International License

Vissim data including traffic volume, intersection geometry, vehicle speed, and vehicle direction. The purpose of this study is to analyze the ongoing congestion of Jalan P.M Noor and Jalan DI panjaitan of Samarinda city based on capacity, degree of saturation (PKJI 2014) and recommendations for improving road infrastructure, the application of traffic signals and the addition of traffic signs that can improve the performance efficiency of Jalan P.M Noor and Jalan DI panjaitan of Samarinda city.

Keyword: Simpang Unsignaled; PKJI 2014; PTV Software Application

1. Pendahuluan

Simpang tiga bersinyal dibuat untuk meningkatkan kelancaran pergerakan dan mengurangi benturan atau konflik antara pengguna jalan. Mengontrol pergerakan di persimpangan adalah salah satu pilihan. Lampu lalu lintas juga dikenal sebagai lampu lalu lintas adalah salah satu yang dapat digunakan Lalu lintas yang baik didefinisikan sebagai lalu lintas yang memungkinkan pergerakan yang mulus kecepatan yang memadai keamanan dan kenyamanan (Suhada,2021). Namun banyaknya persimpangan di kota-kota besar seperti Samarinda dapat menimbulkan masalah tersendiri. Hal ini terjadi dijalan yang memiliki banyak titik pertemuan dan jarak yang pendek antar simpang Karena kendaraan selalu mendapat sinyal merah kendaraan kadang-kadang harus berhenti di setiap simpang. Ini pasti menyebabkan ketidak nyamanan bagi pengendara dan memakan waktu yang lebih lama untuk menunda.

Persimpangan adalah titik temu di jaringan raya yang sering menyebabkan banyak kendala dalam arus lalu lintas. Ini karena persimpangan berubah menjadi area transportasi dan berubah arah. Ketika jumlah kendaraan meningkat di daerah tertentu di persimpangan, kapasitas persimpangan menurun, yang menyebabkan masalah lalu lintas (Perencanaan dan Teknik Lalu Lintas, 1995). Akibatnya, tingkat kinerja lalu lintas di persimpangan menurun, yang menyebabkan orang kehilangan waktu dan biaya perjalanan. Morlok menyatakan bahwa simpang jalan terbagi menjadi dua kategori berdasarkan pengaturannya: simpang jalan dengan sinyal dan jalan tanpa sinyal. Dengan kata lain, orang dapat melintasi simpang hanya ketika lampu lalu lintas dilengan simpang berwarna hijau. Simpang tak bersinyal adalah jenis simpang yang sering ditemukan di kota-kota Indonesia. Tipe ini lebih cocok digunakan di jalan-jalan kecil dengan sedikit belok. Untuk memaksimalkan fungsi simpang, evaluasi kinerjanya harus dilakukan dengan mempertimbangkan daya, tingkat kepadatan, peluang antrian, dan tundaan. Jika kinerja simpang menurun, hal ini akan berdampak negatif pada pemakai jalan, karena kecepatan akan menurun, tundaan akan meningkat, dan akan ada penumpukan kendaraan, yang mengakibatkan biaya operasional kendaraan meningkat dan penurunan kualitas lingkungan.

Berdasarkan jumlah penduduk tahun 2022 jumlah penduduk kota samarinda tercatat sebanyak 834.824 jiwa (Kota Samarinda BPS 2023) telah menjadi identik dengan kemacetan lalu lintas di era modern Oleh karena itu kemacetan lalu lintas diyakini tidak bisa dihilangkan tetapi bisa dikurangi (Nurvita Insani M. Simanjuntak & Tiurma Elita Saragi, 2022). Kemacetan merupakan masalah umum dalam lalu lintas jalan perkotaan yang disebabkan oleh faktorfaktor seperti infrastruktur jalan yang tidak memadai atau kapasitas untuk melayani volume kendaraan yang menyusuri suatu ruas jalan tertentu selain terdapat permasalahan hambatan samping yang signifikan (I Putu Raka Astawa, 2023). Persoalan kemacetan yang kerap didapati di kota-kota besar di Indonesia terutama diakibatkan oleh kurangnya fungsi sistem transportasi (Desy Rara Amiyati, 2014). Jenis hambatan paling mengganggu adalah hambatan samping berupa kendaraan yang mengakses dan keluar jalan dikanan dan dikiri (Aldi Dwi Mawardi, 2020). Selain itu adapun faktor yang mempengaruhi tingkat pelayanan jalan yaitu aktivitas pasar pinggir jalan berkontribusi terhadap peningkatan terjadinya hambatan samping (Muhammad Amirudin, 2022).

Jalan P.M Noor dan Jalan DI panjaitan termasuk dalam kategori jalan kota karena merupakan bagian dari jaringan jalan sekunder di wilayah perkotaan di bawah yurisdiksi Pemerintah Kota. Walikota menetapkan jalur jalan kota dengan menerbitkan Surat Keputusan (SK). Memiliki simbol 2 lajur dua arah tidak terpisah (2/2) TT). Dengan arus kendaraan yang padat, persimpangan ini masih memiliki pola lalu lintas yang buruk. Selain itu, karena kecenderungan pengguna jalan yang semakin bersemangat, ada kemungkinan bahwa simpangan akan terhalang oleh transportasi yang bersaing untuk melewati ruang di persimpangan. Ini menyebabkan banyak kemacetan di persimpangan, terutama di waktuwaktu di mana banyak orang menggunakan jalan, seperti pagi, siang, dan sore hari. Kondisi ini terjadi pada jalan simpang tiga Jalan P.M Noor dan Jalan DI Panjaitan di Kota Samarinda. Studi ini berfokus pada kelancaran jalan simpang tiga karena merupakan jalan sekunder dengan volume yang lebih besar dan jarak antar jalan raya yang dekat. Karena sinyal merah, pengendara sering berhenti di setiap simpang. Akibatnya, evaluasi simpang tiga diperlukan untuk ruas jalan tersebut. Ini akan mengurangi antrian panjang dan kelambatan.Oleh karena itu Ini adalah alasan penulis melakukan penelitian dengan judul "Evaluasi Simpang Tak Bersinyal dengan menggunakan PTV Vissim (simpang tiga Jalan P.M Noor dan Jalan DI Panjaitan kota Samarinda". PTV Vissim adalah aplikasi software yang memungkinkan lalu lintas awal menggunakan data yang dimasukan dan diproses untuk menghasilkan simulasi dan dievaluasi menggunakan data Vissim yang dibutuhkan termasuk volume lalu lintas, geometri persimpangan, kecepatan kendaraan, dan arah kendaraan.

Menurut Rusdianto Horman Lalenoh (2015) Kinerja jalan adalah angka yang menunjukkan keadaan sebenarnya di mana aktivitas terjadi di jalan tersebut. Data primer penelitian terdiri dari data geometrik yang dihitung melalui penghitungan lebar jalur dan lebar lajur data jumlah lalu lintas. Diperoleh dengan menghitung berapa banyak kendaraan melintasi ruas jalan sesuai dengan jenis kendaraan yaitu sepeda motor, angkutan umum, kendaraan sedang, bus besar dan truk besar serta kecepatan arus yaitu kecepatan kendaraan yang ditempuh selama segmen penelitian. Data sekunder lainnya terdiri dari Data Penduduk Kota Samarinda yang diperoleh dari informasi yang dikumpulkan oleh Badan Pusat Statistik (BPS) serta beberapa tinjauan literatur yang didasarkan pada Pedoman Kapasitas Jalan Indonesia (Jenderal BIMA, Departemen Pekerjaan Umum, 2014).

Adapun tujuan pada penelitian ini adalah untuk menganalisis kemacetan yang sedang berlangsung Jalan P.M Noor dan Jalan DI panjaitan kota samarinda bedasarkan terhadap kapasitas, derajat kejenuhan (PKJI 2014) dan menyusun rekomendasi perbaikan infrakstruktur jalan, penerapan sinyal lalu lintas dan penambahan tanda-tanda lalu lintas yang dapat meningkatkan efisiensi kinerja ruas Jalan P.M Noor dan Jalan DI panjaitan kota samarinda

2. Methode

2.1 Lokasi dan Waktu Penelitian

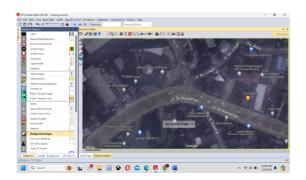
Penelitian dilakukan di Jalan P.M Noor dan D.I Panjaitan. Data-data yang diperlukan dalam evaluasi simpang tak bersinyal adalah Data primer dan sekunder untuk memvisualisasikan arus lalu lintas serta untuk mengetahui kinerja dan efisiensi dari suatu simpang persimpangan jalan yang tidak menggunakan sistem lampu lalu lintas (sinyal).

Waktu Penelitian dilakukan selama tiga hari setiap hari Senin, Rabu dan Minggu dari pukul 07.00-08.00 WITA, 12.00-13.00 WITA hingga pukul 16.00-17.00 WITA

2.2. Alat dan Bahan

Hal yang harus diperhatikan adalah alat atau bahan yang akan dipakai pada saat melakukan survei dilapangan untuk mendukung dan kelancaraan pada saat meneliti sebagai berikut alat dan bahan yang digunkan:

1) Kamera atau smartphone, smartphone untuk mendokumentasikan kondisi fisik simpang arus lalu lintas dan menganalisis arus bebas.



- 2) Meteran manual untuk mengukur lebar dan panjang jalan menggunakan meteran manual. Panjang meteran yang terbatas ini memungkinkan mereka mengukur rentang 25 hingga 50 meter secara manual.
- 3) Aplikasih *multi counter s*angat lah membantu dalam menghitung jumlah kendaraan sesuai jenis kendaraan dengan jumlah yang banyak mampu menghitung jenis hambatanhambatan samping yang ada pada ruas jalan.Berikut Gambar 2 aplikasi *multi counter*.

Gambar 1. Aplikasi Multi Counter Sumber : App Store

4. Aplikasi *PTV Visiim* Versi 2024, *PTV Vissim* adalah simulasi multimoda lalu lintas aliran kecil yang mungkin melihat bagaimana kendaraan pribadi,sarana trasportasi umum dan pejalan kaki bekerja. Program ini dapat animasi dalam mode 3D dengan perangkat tambahan seperti yang ditunjukkan pada Gambar 3 aplikasi *PTV Vissim* 2024:

Gambar 2. Aplikasi PTV Vissim Versi 2024 Sumber : Aplikasi PTV Vissim

2.3. Pengumpulan Data

Data primer yang digunakan untuk analisis termasuk data geometrik jalan, volume arus kendaraan lalu lintas, kapasitas dan derajat jenuh, yang dihitung dan dianalisis sebagai berikut:

- 1. Data geometrik simpang, Geometrik merupakan peranan penting dalam menentukan suatu kapasitas.survei untuk mengetahui panjang ruas jalan yang akan diteliti dan akan melakukan pengukuran untuk mengetahui lebar jalan dan bahu jalan (Hidayat & Adib Wahyu, 2020).
- 2. Data kecepatan arus bebas, survei ini menggunakan metode Speed Meters (dengan alat ukur kecepatan) dengan observer 1 dibagian depan jarak segmen 150 meter yang disebut dengan Start Timing sedangkan observer 2 dibagian belakang jarak segmen yang disebut dengan End Timing.
- 3. Data volume arus lalu lintas, dalam penilaian kuantitas dan lebar jalur sesuai dengan volume lalu lintas satuan biasanya digunakan (Septyanto Kurniawan & Agus Surandono, 2019) yang mencakup metrik seperti volume jam perencanaan dan kapasitas jalan rata-rata

setiap hari. Berdasarkan jenis kendaraannya survei ini menghitung jumlah kendaraan yang melintasi ruas jalan.

2.4. Visualisasi Menggunakan PTV Vissiom

PTV Vissim dapat digunakan pada banyak kebutuhan simulasi lalu lintas dan trasportasi seperti skema pelambatan kendaraan dll (Novia Wikayanti, Heri Azwansyah, & Nurlaily Kadarini, 2018). PTV Vissim kegunaan dapat mensimulasikan berbagai konfigurasi geometrik dan perilaku pengguna jalan yang terjadi dalam sistem transportasi. Model PTV Vissim dirancang untuk mensimulasikan kinerja ruas jalan (Mohammad Hilman Nugraha, Thahir Sastrodiningrat dan Mudjiyono, 2022) karena faktor-faktor seperti geometri jalan, kecepatan, arus lalu lintas dan bagaimana orang berkendara.

2.5. Solusi Alternatif Dengan Menggunakan PTV Vissium

Setelah mendapatkan semua perhitungan dari beberapa data yang diperlukan,agar kita dapat meliahat bagaimana kinerja ruas jalan yang terjadi dengan menggunakan *PTV Vissim*.jika nanti pada saat simulasi yang dilakukan ketika dilihat ruas jalan mengalami kemacetan ada beberapa solusi alternatif lain contohnya, optimalisasi waktu hijau dilakukan berdasarkan waktu siklus dan fase sinyal lalu lintas saat ini menggunakan pengontrol sinyal tetap waktu Vissim. solusi yang kedua melakukan perubahan geometrik simpang dengan melakukan pelebaran lajur 7,00 meter yang sebelumnya sebesar 5,00 meter Jalan P.M.Noor tujuan dari melebarkan lebar lajur ini diharapkan ruas jalan tidak mengalami kemacetan arus lalu lintas. Semua solusi alternatif ini kita lihat berdasarkan simulasi pada Software PTV Vissim bagaimana kinerja ruas jalan yang dapat kita lihat dalam bentuk 2/3D.

3. Result and Discussion

3.1 Data Primer

Data primer yang digunakan untuk analisis termasuk data geometrik jalan, volume arus kendaraan lalu lintas, kapasitas dan derajat jenuh, yang dihitung dan dianalisis sebagai berikut:

3.1.1 Data Geometrik Jalan

Data yang paling awal dibutuhkan untuk mendapatkan kinerja jalan adalah data geometrik jalan pada lokasi yang dituju. Berikut geometrik jalan dari simpang Jl.P.M Noor dan Jl.D.I Panjaitan yaitu:

Tabel 1
Data Eksisting Geometrik Simpang

Pendekat	Jl.P.M Noor	Jl.D.I PANJATAN	Jl.D.I PANJATAN
rendekat	JI.F.IVI INOOI	TIMUR	BARAT
Tipe jalan	2/2 TT	4/2 T	4/2 T
Panjang segmen	300,00 meter	300,00 meter	300,00 meter
Lebar jalur	6,00 meter	12,00 meter	12,00 meter
Lebar lajur	3,00 meter	6,00 meter	6,00 meter
Bahu jalan	Ada	Ada	Ada
Lebar bahu jalan	1,00 meter	2,50 meter	1,00 meter
Kondisi median	Lurus dan datar	Lurs dan datar	Lurs dan datar
Median	Tidak ada	ada	ada
Tipe lingkungan	Pemukiman,pertokoan dan	Pemukiman dan	Pemukiman dan
	pasar	pertokoan	pertokoan

Kohesi: Jurnal Multidisiplin Saintek Volume 4 No 7 Tahun 2024

E-ISSN: 2988-1986 https://ejournal.warunayama.org/kohesi

Status jalan I Jalan kota Jalan kota Jalan kota Jalan kota

Sangat memudahkan pengamatan di lapangan bagi peneliti untuk menentukan segmen jalan. Penelitian ini dibagi menjadi dua segmen, masing-masing sepanjang 150,00 meter, untuk menghitung hambatan samping sepanjang 300,00 meter. Segmen 1 mulai dari 0 hingga 150 meter, dan segmen 2 mulai dari 150 hingga 300 meter.

Data Volume Kendaraan Lalu Lintas

Hasil volume didasarkan pada data survei lapangan yang dilakukan dengan pengamantan pada hari Senin, Rabu, dan Minggu. Survei dilakukan dalam tiga bagian, yaitu pagi, siang, dan sore, selama 15 menit setiap jam. yang diamati berdasarkan semua jenis kendaraan, yaitu sepeda motor, mobil penumpang, kendaraan sedang, bus besar, dan truk besar yang telah dikategorikan di dalam PKJI. Kendaraan yang lewat di ruas jalan akan dihitung menggunakan aplikasi *multi counter*, Setelah mendapatkan data volume kendaraan bebas selama tiga hari, kami akan menentukan jam puncak yang terjadi di ruas jalan. Data survei volume arus kendaraan lalu lintas selama 15 menit dapat ditemukan di Tabel 2

Tabel 2 Data Survei Volume Arus Kendaraan Lalu Lintas Per 15 Menit Simpang Kondisi Eksisting Il.P.M Noor

	J	1.1 ² .1VI 1N	001				
		Utar	a-timur (1	LT)	Uta	ra-barat(1	RT)
Hari, tanggal	Periode						
	07.00.07.45	MC	LV	HV	MC	LV	HV
	07.00-07.15	151	67	3	131	77	10
	07.15-07.30	218	101	4	219	135	14
	07.30-07.45	447	154	6	493	183	26
	07.45-08.00	676	199	9	718	242	36
	Total/ SMP/Jam	746	521	28,6	780,5	637	111,8
	12.00-12.15 12.15-12.30	144 246	53 92	3 5	199 331	102	51 77
				7	455	185	
Senin, 22 april 2024	12.30-12.45 12.45-13.00	336 442	149 213	10	623	263 353	106 127
	Total/SMP/Jam	584	507	32,5	804	903	469,3
			44	2			
	16.00-16.15	121	79	9	103 344	35 143	41 80
	16.15-16.30	231					
	16.30-16.45 16.45-17.00	430 523	132 278	11 16	626 783	214 251	114 131
	Total/ SMP/Jam	652,5	533 70	49,4	928 122	643	475,8
	07.00-07.15 07.15-07.30	140		7		51 121	8 13
		219 460	100 178	11	211 422	247	23
	07.30-07.45 07.45-08.00	637	261	16	699	577	44
	Total/ SMP/Jam	728		49,4	727	996	114,4
	12.00-12.15	132	601 60	49,4 5	185	98	49
	12.15-12.30	252	99	8	342	187	88
	12.30-12.45	342	147	12	469	310	103
Rabu, 01 mei 2024	12.45-13.00	451	255	16	611	379	138
	Total/ SMP/Jam	588,5	561	53,3	803,5	974	491,4
	16.00-16.15	114	54	3	111	69	30
	16.15-16.30	249	109	7	291	120	69
	16.30-16.45	398	148	13	534	233	95
	16.45-17.00	522	282	21	740	280	122
	Total/ SMP/Jam	641,5	593	57,2	838	702	410,8
	07.00-07.15	99	16	3	162	49	3
	07.15-07.30	271	35	5	334	92	12
	07.30-07.45	438	48	10	460	128	17
	07.45-08.00	612	67	13	674	181	27
	Total/ SMP/Jam	710	166	40,3	815	450	76,7
sabtu,11 mei 2024	12.00-12.15	85	42	3	135	73	18
	12.15-12.30	211	76	7	340	173	46
	12.30-12.45	348	115	10	484	259	72
	12.45-13.00	478	152	15	639	334	92
	Total/ SMP/Jam	561	385	45,5	799	839	296,4
	16.00-16.15	162	34	5	175	73	18
	16.15-16.30	317	62	8	382	158	32
	16.30-16.45	477	100	12	616	240	49
	16.45-17.00	655	134	15	828	301	61
	Total/ SMP/Jam	805,5	330	52	1.002,5	772	208

Tabel 3 Data Survei Volume Arus Kendaraan Lalu Lintas Per 15 Menit Simpang Kondisi Eksisting Jl.D.I Panjaitan barat

		ijartari De							
		Bara	Barat-utara (LT)			Barat-timur(ST)			
Hari, tanggal	Periode								
	07.00.07.15	MC	LV	HV	MC	LV	HV		
	07.00-07.15	116	15	2	132	27	2		
	07.15-07.30	253	39	6	282	77	7		
	07.30-07.45	385	67	28	440	115	12		
	07.45-08.00	494	89	60	580	137	19		
	Total/ SMP/Jam	624	210	124,8	717	356	52		
	12.00-12.15	129	105	44	92	74	32		
	12.15-12.30	220	183	55	144	125	36		
Senin, 22 april	12.30-12.45	377	243	71	227	161	38		
2024	12.45-13.00	530	278	87	487	184	55		
	Total/ SMP/Jam	628	809	334,1	475	544	209,3		
	16.00-16.15	134	99	38	107	62	28		
	16.15-16.30	210	166	51	181	98	33		
	16.30-16.45	373	259	70	280	134	52		
	16.45-17.00	506	312	102	489	196	83		
	Total/ SMP/Jam	611,5	836	339,3	528,5	490	254,8		
	07.00-07.15	123	18	7	121	23	4		
	07.15-07.30	250	42		277	69	8		
	07.30-07.45	369	64	24	423	120	11		
	07.45-08.00	504	80	57	589	157	18		
	Total/ SMP/Jam	623	204	118,3	705	369	53,3		
	12.00-12.15	122	99	30	105	64	29		
	12.15-12.30	247	168	39	194	133	38		
Rabu, 01 mei	12.30-12.45	382	252	63	385	159	43		
2024	12.45-13.00	556	299	81	512	187	50		
	Total/ SMP/Jam	653,5	818	276,9	598	543	208		
	16.00-16.15	130	103	29	114	56	23		
	16.15-16.30	241	154	41	170	101	36		
	16.30-16.45	387	247	65	291	143	43		
	16.45-17.00	524	331	98	477	182	77		
	Total/ SMP/Jam	641	835	302,9	526	482	232,7		
	07.00-07.15	139	28	3	139	29	5		
	07.15-07.30	307	63	6	255	73	13		
	07.30-07.45	425	94	10	372	109	20		
	07.45-08.00	519	115	15	469	153	28		
	Total/ SMP/Jam	695	300	44,2	617,5	364	85,8		
	12.00-12.15	159	38	4	162	45	11		
Sabtu,11 mei 2024	12.15-12.30	305	79	7	289	96	22		
	12.30-12.45	444	127	12	381	152	31		
	12.45-13.00	569	189	17	476	226	43		
	Total/ SMP/Jam	738,5	433	52	654	519	139,1		
	16.00-16.15	141	50	4	141	64	5		
	16.15-16.30	277	108	8	251	121	11		
	16.30-16.45	367	169	13	348	174	18		
	16.45-17.00	467	239	18	461	224	29		
	Total/ SMP/Jam	626	566	55,9	600,1	583	81,9		

Tabel 4 Data Survei Volume Arus Kendaraan Lalu Lintas Per 15 Menit Simpang Kondisi Eksisting Jl.D.I Panjaitan timur

		Tim	ur-utara ((RT)	Timu	ır-barat(ST)
Hari, tanggal	Periode	мс	LV	HV	мс	LV	HV
	07.00-07.15	218	87	8	125	44	3
	07.15-07.30	544	195	14	324	116	フ
	07.30-07.45	773	271	23	458	135	11
	07.45-08.00	964	383	45	555	186	12
	Total/ SMP/Jam	1249,5	936	117	731	481	42,9
	12.00-12.15	154	36	22	195	54	12
	12.15-12.30	298	フフ	70	348	139	22
	12.30-12.45	431	107	90	521	204	33
Senin, 22 april	12.45-13.00	516	153	141	696	277	44
2024	Total/ SMP/Jam	699,5	373	419,9	880	674	144,3
	16.00-16.15	201	81	14	176	61	フ
	16.15-16.30	355	140	65	337	121	15
	16.30-16.45	528	216	124	469	188	26
	16.45-17.00	599	253	157	640	249	38
	Total/ SMP/Jam	841,5	690	469,3	811	619	111,8
	07.00-07.15	203	55	10	112	27	5
	07.15-07.30	509	181	17	229	121	8
	07.30-07.45	711	269	27	410	161	12
	07.45-08.00	917	392	41	574	195	16
	Total/ SMP/Jam	1170	897	123,5	662,5	504	53,3
	12.00-12.15	160	29	24	177	49	10
Rabu, 01 mei 2024	12.15-12.30	259	68	81	295	140	19
Rabu, or mer 2024	12.30-12.45	441	102	104	480	224	32
	12.45-13.00	530	167	166	651	293	38
	Total/ SMP/Jam	695	366	487,5	801,5	706	128,7
	16.00-16.15	191	72	20	173	70	8
	16.15-16.30	229	156	58	288	129	14
	16.30-16.45	490	201	145	483	211	24
	16.45-17.00	607	261	191	629	263	36
	Total/ SMP/Jam	758,5	690	538,2	786,5	673	106,6
	07.00-07.15	184	33	4	129	29	2
	07.15-07.30	382	90	11	284	57	4
	07.30-07.45	686	136	21	436	68	フ
	07.45-08.00	989	203	37	581	97	フ
	Total/ SMP/Jam	1120,5	462	94,9	715	251	26
	12.00-12.15	147	84	15	116	51	6
sabtu,11 mei 2024	12.15-12.30	325	198	33	236	89	12
345ta,11 mer 2024	12.30-12.45	447	285	51	329	133	23
	12.45-13.00	585	390	72	442	183	34
	Total/ SMP/Jam	752	957	222,3	561,5	456	97,5
	16.00-16.15	163	83	17	145	38	2
	16.15-16.30	335	159	32	266	86	8
	16.30-16.45	484	259	46	367	126	17
	16.45-17.00	660	306	70	491	154	27
	Total/ SMP/Jam	821	807	214,5	634,5	404	63,7

Keterangan:

LT: Left Turn (kendaraan belok kiri)

ST: Straight Turn (kendaraan lurus)

RT: Right Turn (kendaraan belok kanan)

3.2 Volume Kendaraan

1. Perhitungan pada Jl.P.M Noor hari Senin, 22 april SMP/jam

• LT

 $LV \times EMP LV = 1561 \times 1 = 1561 SMP / jam$

 $HV \times EMP HV = 85 \times 1.3 = 110.5 SMP/jam$

 $MC \times EMP MC = 3965 \times 0.5 = 1982.5 SMP / jam$

• RT

 $LV \times EMP LV = 2183 \times 1 = 2183 SMP / jam$

 $HV \times EMP HV = 813 \times 1.3 = 1056.9 SMP / jam$

 $MC \times EMP MC = 5025 \times 0.5 = 2512.5 SMP/jam$

Jadi total dalam smp/jam didapat: 9406,4 SMP/Jam

2. Perhitungan pada Jl.D.I Panjaitan barat hari Senin, 22 april SMP/jam

• LT

 $LV \times EMP LV = 1855 \times 1 = 1855 SMP / jam$

 $HV \times EMP HV = 614 \times 1.3 = 798.2 SMP/jam$

 $MC \times EMP MC = 3727 \times 0.5 = 1863.5 SMP / jam$

• ST

 $LV \times EMP LV = 1390 \times 1 = 1390 SMP / jam$

 $HV \times EMP HV = 397x 1,3 = 516,1 SMP/jam$

 $MC \times EMP MC = 3441 \times 0.5 = 1720.5 SMP / jam$

Jadi total dalam smp/jam didapat: 8143,3 SMP/Jam

- 3. Perhitungan pada Jl.D.I Panjaitan timur hari Senin, 22 april SMP/jam
- RT

$$LV \times EMP LV = 1999 \times 1 = 1999 \times MP / jam$$

$$HV \times EMP + HV = 6773 \times 1.3 = 1004.9 \text{ SMP/jam}$$

$$MC \times EMP MC = 5581 \times 0.5 = 2790.5 SMP / jam$$

• ST

$$LV \times EMP LV = 1774 \times 1 = 1774 \times MP / jam$$

$$HV \times EMP HV = 230 \times 1.3 = 299 SMP/jam$$

$$MC \times EMP MC = 4844 \times 0.5 = 2422 SMP / jam$$

Jadi total dalam smp/jam didapat: 10289,4 SMP/Jam

- 4. Perhitungan pada Jl.P.M Noor hari Rabu, 01 Mei SMP/jam
 - LT

$$LV \times EMP LV = 1764 \times 1 = 1764 SMP / jam$$

$$HV \times EMP HV = 123 \times 1.3 = 159.9 SMP/jam$$

$$MC \times EMP MC = 3916 \times 0.5 = 1958 SMP / jam$$

• RT

$$LV \times EMP LV = 2672 \times 1 = 2672 SMP / jam$$

$$HV \times EMP HV = 702 \times 1.3 = 912.6 SMP/jam$$

$$MC \times EMP MC = 4737 \times 0.5 = 2368.5 SMP/jam$$

Jadi total dalam smp/jam didapat: 9835 SMP/Jam

- 5. Perhitungan pada Jl.D.I Panjaitan barat hari Rabu, 01 Mei SMP/jam
 - LT

$$LV \times EMP LV = 1857 \times 1 = 1857 SMP / jam$$

$$HV \times EMP HV = 537 \times 1.3 = 698.1 SMP/jam$$

$$MC \times EMP MC = 3835 \times 0.5 = 1917.5 SMP / jam$$

• ST

$$LV \times EMP LV = 1394 \times 1 = 1394 SMP / jam$$

$$HV \times EMP HV = 380 \times 1.3 = 494 SMP / jam$$

$$MC \times EMP MC = 3658 \times 0.5 = 1829 SMP / jam$$

Jadi total dalam smp/jam didapat: 8189,6 SMP/Jam

- 6. Perhitungan pada Jl.D.I Panjaitan timur hari Rabu,01 Mei SMP/jam
 - RT

$$LV \times EMP LV = 1952 \times 1 = 1952 SMP / jam$$

$$HV \times EMP HV = 884 \times 1.3 = 1149.2 SMP/jam$$

$$MC \times EMP MC = 5247 \times 0.5 = 2623.5 SMP/jam$$

• ST

$$LV \times EMP LV = 1883 \times 1 = 1883 SMP / jam$$

$$HV \times EMP HV = 222 \times 1.3 = 288.6 SMP/jam$$

$$MC \times EMP MC = 4501 \times 0.5 = 2250.5 SMP / jam$$

Jadi total dalam smp/jam didapat: 10146,8 SMP/Jam

7. Perhitungan pada Jl.P.M Noor hari Sabtu, 11 Mei SMP/jam

• LT

$$LV \times EMP \ LV = 881 \times 1 = 881 \ SMP/jam \ HV \times EMP \ HV = 106 \times 1.3 = 137.8 \ SMP/jam$$

$$MC \times EMP MC = 4153 \times 0.5 = 2076.5 SMP / jam$$

• RT

$$LV \times EMP LV = 2061 \times 1 = 2061 SMP / jam$$

$$HV \times EMP HV = 447 \times 1.3 = 581.1 SMP/jam$$

$$MC \times EMP MC = 5229 \times 0.5 = 2614.5 SMP / jam$$

Jadi total dalam smp/jam didapat: 8351,9 SMP/Jam

- 8. Perhitungan pada Jl.D.I Panjaitan barat hari Sabtu, 11 Mei SMP/jam
 - LT

LV x EMP LV =
$$1299 \times 1 = 1299 \text{ SMP/jam}$$

HV x EMP HV = $117 \times 1.3 = 152.1 \text{ SMP/jam}$

$$MC \times EMP MC = 4119 \times 0.5 = 2059.5 SMP/jam$$

• 57

$$LV \times EMP LV = 1466 \times 1 = 1466 SMP / jam$$

$$HV \times EMP HV = 236 \times 1.3 = 306.8 SMP/jam$$

$$MC \times EMP MC = 3744 \times 0.5 = 1872 SMP / jam$$

Jadi total dalam smp/jam didapat: 7155,4 SMP/Jam

- 9. Perhitungan pada Jl.D.I Panjaitan timur hari Sabtu, 11 Mei SMP/jam
 - RT

$$LV \times EMP LV = 2225 \times 1 = 2225 SMP / jam$$

$$HV \times EMP + HV = 409 \times 1.3 = 531.7 \text{ SMP/jam}$$

$$MC \times EMP MC = 5387 \times 0.5 = 2623.5 SMP / jam$$

• ST

$$LV \times EMP LV = 1111 \times 1 = 1111 SMP / jam$$

$$HV \times EMP HV = 149 \times 1.3 = 193.7 SMP/jam$$

$$MC \times EMP MC = 3822 \times 0.5 = 1911 SMP/jam$$

Jadi total dalam smp/jam didapat: 8595,9 SMP/Jam

4. Berdasarkan hasil perhitungan keseluruhan total volume kemacetan dengan antrian panjang total volume kendaraan mencapai 80113,7 Satuan Mobil Penumpang (SMP) per jam hal ini disebabkan padatnya aktifitas masyarakat sekitar meningkat di karenakan daerah tersebut termasuk ke dalam pusat perbelanjaan dan penjualan pertokoan dan waktu jam pulang kerja yang sangat tinggi.

				Ser	in,22 Ap	ril 2024				
	P.M	Noor	Total	Panjaita	an barat	Total	Panjaita	ın timur	Total	Tot
No	LT	RT	smp/jam	LT	ST	smp/jam	RT	ST	smp/jam	
07:00-	1295,6	1529,3	2824,9	958,8	1125	2083,8	2302,5	1254,9	3557,4	8466
08:00										
12:00-	1123,5	2176,3	3299,8	1771,1	1228,3	2999,4	1492,4	1698,3	3190,7	9489
13:00										
16:00-	1234,9	2046,8	3281,7	1786,8	1273,3	3060,1	2000,8	1541,8	3542,6	9884
17:00										
				Ra	bu, 01 me	ei 2024				
No	P.M	Noor	Total	Panjaita	an barat	Total	Panjaita	ın timur	Total	Tot
	LT	RT	smp/jam	ST	ST	smp/jam	RT	ST	smp/jam	
07:00-	1378.4	1837,4	3215,8	945,3	1127,3	2072,6	2190,5	1219,8	3410,3	8698
08:00	1570,1	,	ĺ	ĺ	,	,	,			
12:00-	1202,8	2268,9	3471,7	1748.4	1349	3097.4	1548.5	1636,2	3184,7	9753
13:00	1202,0	,-	. ,	,		,	,-	,	,	
16:00-	1291.7	1950.8	3242,5	1778.9	1240.7	3019.6	1986,7	1566,1	3552,8	9814
17:00	1271,7	1,00,0	22.2,0	1770,5	12.0,,	2017,0	1,00,,	1000,1	2002,0	,01
				Sal	otu, 11 m	ei 2024				
No	P.M Noor Total		Total		an barat	Total	Paniaita	ın timur	Total	Tot
110	LT	RT	smp/jam	ST	ST	smp/jam	RT	ST	smp/jam	100
07:00-		1341,7	2258	1039,2	1067	2106,2	1677,4	992	2669,4	7033
08:00	916,3	1341,/	2236	1039,2	1007	2100,2	10//,4	772	2009,4	/032
		1024.4	2025.0	1000 5	1212.1	2525.6	1021.2	1115	2046.2	0.505
12:00-	991,5	1934,4	2925,9	1223,5	1312,1	2535,6	1931,3	1115	3046,3	8507
13:00										
16:00-	1187,5	1982,5	3170	1247,9	1265	2512,9	1842,5	1102,2	2944,4	8627
17:00										

Berdasarkan hasil perhitungan per jam volume kemacetan dengan antrian panjang total volume kendaraan mencapai 9.884,4 smp/jam (Senin,22 april 2024 di jam 16:00-17:00) hal ini disebabkan padatnya aktifitas masyarakat sekitar meningkat di karenakan daerah tersebut termasuk ke dalam pusat perbelanjaan dan penjualan pertokoan dan waktu jam pulang kerja yang sangat tinggi. Dapat dilihat pada **Tabel 14 Volume Kendaraan per jam.**

4.2 ANALISIS DATA

Kapasitas ruas jalan didefinisikan sebagai arus lalulintas maksimmn yang dapat melintas dengan stabil pada suatu potongan melintang jalan pada keadaan (geometrik, pemisah arah, komposisi lalulintas, lingkungan) 16 tertentu. Untuk jalan dua lajur dua arah, kapasitas ditentukan untuk arah dua arah (kombinasi dua arah) tetapi untuk jalan banyak lajur, arus dipisahkan per arah dan kapasitas ditentukan per lajur. Kapasitas jalan didefinisikan PKJI 2014 sebagai arus maksimmn melalui suatu titik di jalan yang dapat dipertahankan per satuan jam pada kondisi tertentu. Untuk jaian dua iajur dua arah, kapasitas ditentukan untuk arus dua arah (kombinasi dua arah), tetapi untuk jalan dengan banyak lajur, an1s dipisah per arah dan kapasitas ditentukan per lajur. Kapasitas jalan (C) didasarkan pada kondisi jalan yang lebih baik dibandingkan dengan standar, atau sebaliknya kapasitas akan turun jika kondisi jalan lebih buruk dibandingkan dengan standar.

Nilai kapasitas diamati melalui pengumpulan data lapangan selama memungkinkan. Kafasitas juga di perkirakan dari analisa kondisi lalu-lintas dan secara teoritis dengan mengasumsikan hubungan matematik antara kecepatan dan arus. Kapasitas dinyatakan dalam satuam mobil penumpang (SMP). Persamaan untuk kafasitas jalan dalam MKJI (1997) adalah sebagai berikut:

 $C = C0 \times FLp \times FM \times FUK \times FHS \times FBKI \times FBKA \times FRM$

C = Kapasitas segmen jalan yang sedadiamati

 C_0 = Kapasitas dasar kondisi segmen jalan yaideal

 F_{Lp} = Faktor koreksi lebar rata–rata pendekat

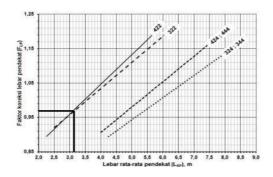
 F_M = Faktor koreksi tipe median F_{UK} = Faktor koreksi ukuran kota

 F_{HS} = Faktor koreksi hambatan samping FB_{KI} = Faktor koreksi arus belok kiri FB_{KA} = Faktor koreksi arus belok kanan

FR_{Mi} = Faktor Koreksi Rasio Arus dari JalaMinor

 $C = C0 \times FLp \times FM \times FUK \times FHS \times FBKI \times FBKA \times FRM$

 $C = 3200 \times 0.94 \times 0.94 \times 0.94 \times 0.92 \times 1.68 \times 1.0 \times 1.95$


C=8.521 Smp/jam

1. Lebar rata-rata pendekat

Lebar pendekat rata-rata F_{LP} Variabel masukan adalah lebar rata-rata semua pendekat L1 = 3,325 m dan tipe simpang IT = 324.

LRP =
$$(a + c + b + d)$$
 / Jumlah lengan simpang
= $(0.00+3.00+6.00+6.00)$ / $3 = 5.00$ m

Batas nilai yang diberikan adalah grafik atau dapat digunakan rumus untuk klasifikasi IT yaitu:

Untuk simpang 324 atau 344:

$$\begin{split} F_{Lp \,=\, 0,62 \,+\, 0,0646} \; L_{RP}......(5) \\ F_{Lp \,=\, 0,62 \,+\, 0,0646} \,\times \, 5 \\ = & 0.94 \end{split}$$

- 2. Faktor penyesuaian median jalan utama (FM) Didapat nilai median jalan utama adalah 1 karena jalan utama tidak ada median.
- 3. Berdasarkan jumlah penduduk Kota Samarinda, dari badan perencanaan daerah Kota Samarinda, pada tahun 2024 jumlah penduduk dipredisikan berjumlah \pm . 878405 jiwa, termasuk ukuran kota Besar maka didapatkan nilai 0,94.

Ukuran Kota	Populasi Penduduk, juta Jiwa	$\mathbf{F}_{\mathbf{U}\mathbf{K}}$
Sangat kecil	< 0,1	0,82
Kecil	0,1-0,5	0,88
Sedang	0,5-1,0	0,94
Besar	1,0-3,0	1,0
Sangat besar	>3,0	1,05

4. Hambatan Samping

Pengaruh (F_{HS}) sangat berpengaruh pada kinerja ruas jalan. Jenis hambatan samping telah di

Tipe			F _{HS}						
lingkungan jalan	Hambatan samping	R _{КТВ} 0,00	0,05	0,10	0,15	0,20	≥ 0,25		
	Tinggi	0,93	0,88	0,84	0,79	0,74	0,70		
Komersial	Sedang	0,94	0,89	0,85	0,80	0,75	0,70		
	Rendah	0,95	0,90	0,86	0,81	0,76	0,71		
	Tinggi	0,96	0,91	0,86	0,82	0,77	0,72		
Permukiman	Sedang	0,97	0,92	0,87	0,82	0,77	0,73		
	Rendah	0,98	0,93	0,88	0,83	0,78	0,74		
Akses Terbuka	Tinggi/sedang /rendah	1,00	0,95	0,90	0,85	0,80	0,75		

kategorikan di dalam MKJI sebagai berikut:

Berdasarkan pengamatan variabel kelas tipe lingkungan adalah lingkungan komersial, kelas nambatan samping (FHS) adalah sedang, akibat dari kendaraan bermotor dan rasio kendaraan tak permotor (RKTB/RKB) = 0,021.

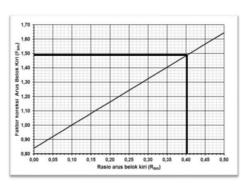
Didapat nilai FHS = 0,92

(dengan cara Interpolasi Linier) Dik:

```
Y = 0.02 Y = 0.02 Y = 0.03 Y = 0.04 Y = 0.04 Y = 0.05 Y = 0.05
```

- 5. Tipe lingkungan jalan (road environtment = RE) Kelas tipe lingkungan jalan menggambarkan tata guna lahan dan aksesibilitas dari seluruh aktifitas jalan.
 - a) Komersial yaitu penggunaan lahan untuk kegiatan komersial dengan akses simpang jalan langsung untuk kendaraan dan pejalan kaki.
 - b) Pemukiman yaitu penggunaan lahan untuk pemukiman dengan akses samping jalan langsung untuk kendaraan dan pejalan kaki.
 - c) Akses terbatas yaitu tidak atau dibatasinya akses samping jalan langsung (contoh adanya pagar pembatas jalan)

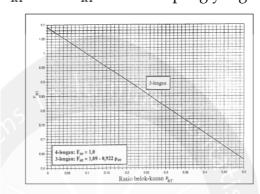
Kelas tipe lingkungan							
jalan RE	samping SF	0,00	0,05	0,10	0,15	0,20	≥ 0,25
Komersial	tinggi	0.93	0,88	0,84	0,79	0,74	0,70
	sedang	0.94	0,89	0,85	0,80	0,75	0,70
	rendah	0,95	0,90	0,86	0,81	0,76	0,71
Permukiman	tinggi	0,96	0,91	0,86	0,82	0,77	0,72
~()\' ~	sedang	0,97	0,92	0,87	0,82	0,77	0,73
	rendah	0,98	0,93	0,88	0,83	0,78	0,74
Akses terbatas	tinggi/sedang/ rendah	1,00	0,95	0,90	0,85	0,80	0,75


Data lingkungan yang dibutuhkan dalam perhitungan adalah sebagai berikut.

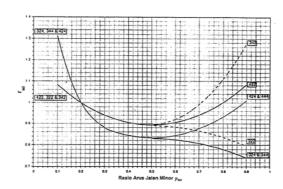
Faktor Penyesuaian tipe lingkungan jalan, hambatan samping dan kendaraan tak bermotor maka nilai FH dilakukan interpolasi kelas hambatan samping sedang faktor penyesuaian tipe lingkungan jalan, hambatan samping dan kendaraan tak bermotor FHS. Simpang tergolong dalam tipe lingkungan jalan

komersial dengan hambatan samping sedang dan untuk nilai PUM adalah 0,0019, sehingga diperoleh nilai FHS adalah 0,94.

6. Faktor penyesuaian belok kiri F_{LT} Untuk rasio arus belok kiri adalah


Rumus yang digunakan adalah:

Sehingga


$$F_{LT} = 0.84 + (1.61 \times 0.52)$$

$$F_{LT} = 6.00$$

7. penyesuaian belok kanan F_{RT} Nilai F_{RT} untuk simpang yang memiliki 3 lengan adalah 1,0

8. Faktor penyesuaian arus jalan minor (FMI) Untuk rasio arus jalan minor adalah 0,179. FMI = $16.6 \times PMI + 33.3 \times PMI + 25.3 \times PMI + 25.3 \times PMI + 1.95$ FMI = $16.6 \times 0.1794 - 33.3 \times 0.1793 + 25.3 \times 0.1792 - 8.6 \times 0.179 + 1.95$ FMI = 1.95

3.3.3 Analisis Kinerja Simpang Tak Bersinyal

a. Derajat kejenuhan

dapat dilihat sebagai berikut:

$$DS = Q/C$$

Keterangan:

Q = Volume Kendaraan

C = Kapasitas

(DS) DS = QTOT / C
DS =
$$9.884 / 8.521$$

DS = $1,16 SMP/jam$

Dari data derajat kejenuhan tersebut yang sampa dengan 1,16 SMP/jam yang di mana dari keterangan derajat titik jenuh bahwa apa bila nilai derajat titik jenuh lebih kecil dar pada 0,6 maka kondisi jalan tersebut dapat di simpulkan lancar.

b. Perhitungan kecepatan arus bebas Rumus:

Ruas jalan Jl.P.M Noor merupakan tipe 2 lajur 2 arah tak terbagi (2/2 UD), dengan lebar jalur lalu lintas 3 meter per lajur. Perhitungan kecepatan arus bebas dihitung berdasarkan Manual Kapasitas Jalan Indonesia (MKJI 1997) untuk jalan Perkotaan. Untuk kecepatan arus bebas dasar dan faktor penyesuaian diambil dari MKJI 1997, berikut ini perhitungan kecepatan arus bebas kendaraan berdasarkan MKJI 1997

$$VB = (VBD + VBL) \times FVBHS \times FVBUK$$

 $VB,KR = (44 + 0) \times 0.96 \times 1$
 -42 km/ism

= 42 km/jam

c. Arus lalu lintas (Q) Rumus:

 $Q = (EKRkr \times KR) + (EKRkb \times KB) + (EKRsm \times SM)$

Dimana:

- Qadalah jumlah total kendaraan.
- EKRkr adalah Ekuivalensi Kendaraan Roda 2 untuk kendaraan yang belok kiri.
- KR adalah jumlah kendaraan yang belok kiri.
- EKRkb adalah Ekuivalensi Kendaraan Roda 4 untuk kendaraan yang belok kanan.
- KB adalah jumlah kendaraan yang belok kanan.
- EKRsm adalah Ekuivalensi Kendaraan Roda 6 untuk kendaraan yang berjalan lurus.
- SM adalah jumlah kendaraan yang berjalan lurus.

Mencari nilai arus lalu lintas

(Q)
$$Q = (846 \times 1.0) + (98 \times 1.3) + (3740 \times 0.4)$$

 $Q = 846 + 127.4 + 1.496$

Q = 2469 skr/jam

d. Persamaan untuk menentukan kecepatan arus bebas adalah sebagai berikut :

Rumus : VB = (VBD + VBL) x FVBHS x FVBUK (

Keterangan:

VB = Kecepatan arus bebas untuk KR (km/jam)

VBD,kr = Kecepatan arus bebas dasar untuk KR

VBl = Nilai penyesuaian kecepatan akibat lebar jalan (km/jam)

FVBHS = faktor penyesuaian kecepatan bebas akibat hambatan samping

FVBUK = Faktor penyesuaian kecepatan bebas untuk ukuran kota

$$VB = (44 + 0) \times 0.96 \times 1$$

= 42 km/jam

e. Untuk DJ > 0,60 rumus yang digunakan adalah:

$$TLL = 10504 \ 0.2742 - 0.20462 * DJ - (1 - DJ)2$$

Sehingga dapat dihitung sebagai berikut: TLL= 10504 0,2742-0,2042*1,16

$$TLL = 10504 \ 0.2742 - 0.2042x1.16$$

$$T = TLL + TG - (1 - 1,16)2 - (1 - 1,16)2 = 281397,316 \text{ det/skr}$$

T = 281397,316 + 3,8744 = 281,40 det/skr

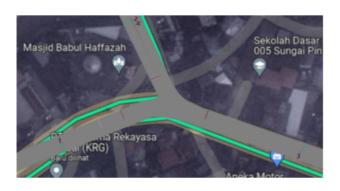
3.3 Data Masukan

3.4.1 Kondisi Geometri Simpang

Kondisi data geometrik pada simpang tiga jalan P.M Noor dan D.I jalan Panjaitan yang di dapatkan dari hasil survei yang dilakukan secara langsung di lapangan dengan alat ukur dan pengamatan Simpang yang diteliti bertipe 322 dengan alasan jumlah lengan simpang ada 3 lengan dengan jumlah lajur jalan minornya 2 dan juga jumlah lajur jalan utamanya 2 dan tipe lingkungan simpang tersebut adalah tipe komersial dikarenakan pada lokasi simpang tersebut terdapat kawasan pertokoan, perhotelan, rumah makan dan UMKM lain nya. Kelas ukuran kota sedang dengan hambatan samping tinggi.

3.5 Pemodelan Dengan Sofware PTV Vissim 2024

Dalam penelitian pada Simpang Dalam penelitian pada Simpang Menukan ini peneliti menggunakan Software PTV Vissim 2024 (Student Version). Penggunaaan Software PTV Vissim 2024 (Student Version) ini hanya dapat menghasilkan durasi running yang maksimal dilakukan dalam proses simulasi yakni selama 10 menit (600 detik) dan luasan daerah yang dapat dicangkup dalam menganalisis adalah sebesar 1km².


3.5.1 . Parameter Input Vissim

a. Jaringan Jalan berikut merupakan jaringan dalan dan kondisi geometrik simpang tiga jalan P.M Noor dan D.I Jalan Panjaitan

Table 5 Jaringan Jalan

Pendekat	Jl.P.M Noor	Jl.D.I Panjatan Timur	Jl.D.I Panjatan Barat
Tipe jalan	2/2 TT	4/2 T	4/2 T
Panjang	300,00 meter	300,00 meter	300,00 meter
segmen			
Lebar jalur	6,00 meter	12,00 meter	12,00 meter
Lebar lajur	3,00 meter	6,00 meter	6,00 meter
Bahu jalan	Ada	Ada	Ada
Lebar bahu	1,00 meter	2,50 meter	1,00 meter
jalan			

B Rute Perjalanan

Gambar 4. Rute Perjalanan

Gambar 5. Rute Perjalanan dari Barat ke utara

Gambar 6. Rute perjalanan dari utara ke barat

Gambar 7. Rute perjalanan dari utara ke timur

Gambar 8. Rute perjalanan dari timur ke utara

Gambar 9. Rute perjalanan dari timur ke barat

Gambar 10. Rute perjalanan dari barat ke timur

C Jenis Kendaraan

Jenis kendaraan dalam pemodelan ini dikelompokkan dalam 3 bagian yaitu sebagai berikut:

- 1. MC yaitu untuk kendaraan roda dua bermesin seperti motor.
- 2. LV yaitu untuk kendaraan roda empat ukuran sedang seperti sedan, jeep, kijang, pick up, mobil hantaran dan angkot
- 3. HV yaitu untuk kendaraan berat seperti bus besar, bus sedang, truk besar, truk sedang, trailer dan truk gandeng.

Number: 3 No		Category	Model2D3DDistr	r
Number: 3	00 MC	Bike	400: MOTOR	v
2 6	40 LV	Car	500: KENDARA	
3 6	50 HV	Car	600: KENDARA	

Gambar 11. 1 Jenis Kendaraan

d Kecepatan Kendaraan

Berikut merupakan contoh kecpatan kendaraan yang telah di input ke dalam software PTV visim 2024 (Student Version).

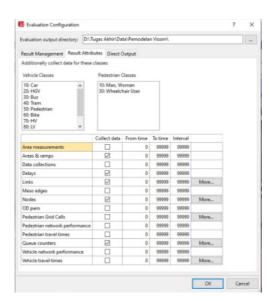
Gambar 12. 2 Kecepatan Kendaraan

e Konflik Area

Gambar 13. 3 Konflik Area

f Perilaku Pengemudi

Pada perilaku pengemudi di atur dengan pedoman perilaku pengemudi asli yang ada di lapangan penelitian.


Gambar 14. 4 Perlaku Pengemudi

g Volume Kendaraan

Gambar 15. 5 Volume Kendaraan

h Konfigurasi Pemrosesan

Gambar 16. 6 Konfigurasi Pemrosesan

Table 6
Pemodelan Eksiting

Tentodelan Erona		T7 1	T 00	77 1 D 1
Movement	Qlen	Vehs	LOS	VehDelay
Movement	(m)	(All)	(All)	(det/skr)
Il Daniaitan (harat) Valuar II Daniaitan	()	(/	(/	(3221) 3212)
Jl. Panjaitan (barat) Keluar–Jl. Panjaitan	104,52	60	LOS F	132,96
(Timur) Masuk	101,02	00	r	102,00
Jl. Panjaitan (Timur) Keluar–Jl. Panjaitan				4.4.40
(Barat) Masuk	104,52	48	LOS_F	141,48
` ,				
Jl.P.M Noor (Utara) Keluar–Jl. Panjaitan	88,78	43	LOS F	101 50
(Timur) Masuk	00,70	43	LOS_F	101,50
,				
Jl.P.M Noor (Utara) Keluar–Jl. Panjaitan	88,78	57	LOS F	98,35
(Barat) Masuk	00,70	01	L00_1	70,00
Jl. Panjaitan (Barat) Keluar–Jl.P.M Noor				
	114,24	24	LOS_F	190,01
(Utara) Masuk				
Jl. Panjaitan (Timur) Keluar–Jl.P.M Noor	11101	26	LOCE	170.50
(Utara) Masuk	114,24	26	LOS_F	170,50
` ,	100 E1	42	LOCE	120.25
Rata-Rata	102,51	43	LOS_F	139,35

Berdasarkan data yang baru-baru ini diungkapkan di atas, P.M. PM didukung oleh data terbaru di atas. Dari hasil analisis terlihat bahwa lalu lintas pada simpang P.M. Noor dan D.I. Panjaitan merupakan daerah yang padat, antrian kendaraan panjang, kecepatan kendaraan rendah, kepadatan lalu lintas sangat tinggi, sehingga volume lalu lintas sangat tinggi. Jumlah kendaraan sedikit dan kemacetan berlangsung cukup lama.

3.5.2. Hasil Pemodelan Skenario 1

Skenario 1 dilakukan dengan cara merubah urutan fase pada lengan Barat dan Utara, yaitu dengan menjalankan kendaraan secara bersamaan tetapi dilarang untuk berbelok kanan. Perubahan urutan fase pada simpang tersebut dipengaruhi oleh jumlah volume kendaraan yang ada pada lengan Barat dan Utara, dikarenakan pada kedua lengan tersebut memiliki jumlah volume kendaraan yang tinggi. Waktu siklus pada skenario 1 berubah menjadi 96 detik dari waktu siklus pada kondisi eksisting sebesar 130 detik. Perubahan tersebut disebabkan oleh berkurangnya urutan fase waktu siklus yang pada kondisi eksisting terdapat 3 waktu siklus (Barat, Timur, Utara) menjadi 3 waktu siklus (Barat-Utara, Timur).

Gambar 17. 7 Pemodela Skenario 1

Table 7
Pemodelan Skenario 1

Marrament	Qlen	Vehs	LOS	VehDelay
Movement	(m)	(All)	(All)	(det/skr)

Jl. Panjaitan (barat) Keluar–Jl. Panjaitan (Timur) Masuk	93,10	105	LOS_E	78,11
Jl. Panjaitan (Timur) Keluar–Jl. Panjaitan	78,78	65	LOS E	74,46
(Barat) Masuk	70,70	00	LOU_L	, 1,10
Jl.P.M Noor (Utara) Keluar–Jl. Panjaitan (Timur) Masuk	78,78	103	LOS_E	74,84
Jl.P.M Noor (Utara) Keluar–Jl. Panjaitan				
(Barat) Masuk	97,73	34	LOS_F	112,95
Jl. Panjaitan (Barat) Keluar–Jl.P.M Noor	114,24	46	LOS F	108,84
(Utara) Masuk	114,44	40	LOS_I	100,04
Jl. Panjaitan (Timur) Keluar–Jl.P.M Noor	41,18	34	LOS E	62,82
(Utara) Masuk	,		_	,
Rata-Rata	83,96	77,83	LOS_E	85,33

3.5.3. Hasil Pemodelan Skenario 2

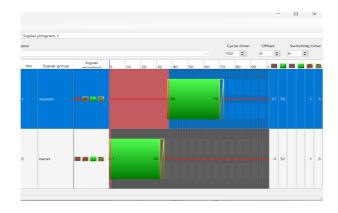
Lebar pendekatan ini Dengan menambah lebar jalan P.M Noor cabang barat dari 6 m menjadi 16 mm, geometri jalan Cabang Barat (ujung barat jalan D.I Panjaitan) diubah pada skenario Penambahan lebar jalan tersebut sama dengan lebar jalan pendekat eksisting di Jl. D.I Panjaitan pada Cabang Timur. Lebar jalan di Jl bisa ditambah. D.I Panjaitan cabang barat karena kondisi sekitar jalan masih terdapat ruang atau sisa lebar trotoar dapat dimaksimalkan untuk menambah lebar Jl. D.I Panjaitan di cabang barat.

Dari hasil yang telah didapatkan dari percobaan pada skenario 2 dengan merubah urutan fase dan waktu siklus dapat disimpulkan bahwa dengan skenario tersebut tundaan (VehDelay) rata-rata pada simpang menurun menjadi 108,55 det/skr dari kondisi eksisting sebesar 139,35det/skr dan tingkat pelayanan (*Level of Service*) pada simpang masih tetap sama dari kondisi eksisting F (buruk sekali) menjadi F (buruk sekali)

Berdasarkan hasil dari pemodelan skenario 2 dapat diketahui bahwa arus lalu lintas menjadi tertahan sehingga terjadi antrian lalu lintas yang panjang, kecepatan kendaraan rendah, kepadatan lalulintas yang sangat tingg dan volume kendaraan rendah tetaP terjadi kemacetan untuk durasi yang cukup lama. Dalam hal ini pengaruh dari pemodelan skenario 2 terhadap simpang lain yang dekat dengan simpang D.I Panjaitan akan yaitu terjadinya kepadatan lalu lintas yang sangat tinggi yang di pengaruhi oleh volume kendaraan yang akan keluar dari simpang Jalan P.M Noor dan D.I Panjaitan. Ada beberapa pengaruh menngkatnya volume kendaraan pada skenario 2 ini di karenakan pada skenario in merubah geometrik ruas Jalan D.I Panjaitan, sehingga membuat kapasitas pada ruas jalan tersebut meningkat dan simpang lain yang berada di sekitar Jalan P.M Noor dan D.I Panjaitan akan menerima volume kendaraan yang jauh lebih banyak lagi.

Table 8 Pemodelan Skenario 2

Movement	Qlen	Vehs	LOS	VehDelay		
Wovement	(m)	(All)	(All)	(det/skr)		
Jl. Panjaitan (barat) Keluar–Jl. Panjaitan	106,44	63	LOS_F	126,88		
(Timur) Masuk						
Jl. Panjaitan (Timur) Keluar–Jl. Panjaitan	106,44	56	LOS_F	141,24		
(Barat) Masuk						
Jl.P.M Noor (Utara) Keluar–Jl. Panjaitan	81,76	45	LOS_F	88,84		
(Timur) Masuk						
Jl.P.M Noor (Utara) Keluar–Jl. Panjaitan	114,15	36	LOS_F	174,63		
(Barat) Masuk						
Jl. Panjaitan (Barat) Keluar-Jl.P.M Noor	94,84	39	LOS_F	121,92		
(Utara) Masuk						
Jl. Panjaitan (Timur) Keluar–Jl.P.M Noor	94,84	24	LOS_F	139,08		



(Utara) Masuk

Rata-Rata 99,74 43 LOS_F 108,55

3.5.4. Hasil Pemodelan Skenario 3

Skenario ketiga melibatkan penerapan rute satu arah untuk Cabang Timur dan pendekatan entry-only, dengan asumsi arus dari cabang yang sama akan menuju ke arah lain. Waktu siklus pada skenario 3 meningkat menjadi 102 detik dibandingkan waktu siklus pada kondisi saat ini sebesar 130 detik. Perubahan tersebut disebabkan adanya pengurangan urutan periode waktu siklus, pada kondisi saat ini terdapat 3 waktu siklus (Barat, Timur, Utara) menjadi 2 waktu siklus (Utara dan Barat).

Gambar 18. Pemodelan Skenario 3

Dengan melakukan penyesuaian urutan fasa dan waktu siklus, percobaan skenario 3 menunjukkan bahwa rata-rata tundaan (VehDelay) pada simpang tersebut berkurang dari keadaan saat ini sebesar 139,35 detik/mata uang dan pelayanan. tingkat pelayanan (service level) merupakan titik temu yang selalu dijaga dari status F (sangat miskin) hingga F (sangat miskin). Berdasarkan hasil pemodelan skenario 3 terlihat lalu lintas padat, kendaraan mengantri panjang, kendaraan melaju dengan kecepatan rendahPeriode kepadatan lalu lintas yang tinggi di persimpangan Jalan P.M Noor dan persimpangan terbaru Keuskupan Malaysia adalah hasil dari pemodelan Skenario 3, yang telah menunjukkan bahwa banyak kendaraan meninggalkan persimpangan seiring berjalannya waktu. Peningkatan volume ini disebabkan oleh penerapan jalan satu arah pada Jalan P.M Noor dan D.I Panjaitan pada cabang utara Jalan P.M Noor dan D.I Panjaitan sehingga memperlancar lalu lintas pada cabang ini dan waktu siklus menjadi lebih cepat khususnya 2 fase (Utara dan Barat) dibandingkan dengan kondisi eksisting pada 3 fase (Timur, Utara dan Barat). Persimpangan lain Jalan D.I Panjaitan cabang timur akan menerima lebih banyak lalu lintas secara signifikan dan juga akan mengubah fase waktu siklus dibandingkan persimpangan lain di cabang timur, utara dan barat.

Table 9

Pemodelan Skenario 3

Movement				Vehs (All)	LOS (All)	VehDelay (det/skr)
Jl. Panjaitan (barat)	Keluar–Jl.	Panjaitan	93,42	73	LOS_F	93,39
(Timur) Masuk						
Jl. Panjaitan (Timur)	Keluar–Jl.	Panjaitan	93,42	58	LOS_F	110,69
(Barat) Masuk		,				
Jl.P.M Noor (Utara)	Keluar–Jl.	Panjaitan	85,73	61	LOS_F	76,83
(Timur) Masuk						
Jl.P.M Noor (Utara)	Keluar–Jl.	Panjaitan	67,48	48	LOS_F	84,25
(Barat) Masuk						
_Jl. Panjaitan (Barat)	Keluar–Jl.F	P.M Noor	67,48	28	LOS_F	79,52

(Utara) Masuk	(0- 10
Jl. Panjaitan ((Utara) Masuk	(Timur)	Keluar–Jl.P.M	Noor	67,48	34	LOS_F	82,69
(Otara) Masak	Rata-R	lata		79,16	50,33	LOS F	87,89

4.4.6. Perbandingan Hasil Pemodelan

Table 19. Perbandingan Hasil Pemodelan

No	Kondisi Analisis	Qlen (m)	VehDelay(det/skr)	LOS (ALL)
1	Eksisting	102,51	139,35	LOS_F
2	Skenario 1	83,96	85,33	LOS_E
3	Skenario 2	99,74	108,55	LOS_F
4	Skenario 3	79,16	87,89	LOS_F

Setelah melihat perbandingan hasil analisis pemodelan menggunakan software Vissim pada tabel di atas maka dapat diambil kesimpulan bahwa skenario 1 adalah skenario terbaik, hasil yang didapatkan dari percobaan pada skenario 1 dengan merubah urutan fase dan waktu siklus dapat disimpulkan bahwa dengan skenario tersebut tundaan (VehDelay) rata-rata pada simpang menurun menjadi 85,33det/skr dari kondisi eksisting sebesar 139,35det/skr dan tingkat pelayanan (Level of Service) pada simpang meningkat dari kondisi eksisting F (buruk sekali) menjadi E (buruk).

4. Conclusion

Berdasarkan hasil penelitian yang dilakukan dengan menggunakan software PTV Vissim 2024 (Student Version) dapat ditarik kesimpulan sebagai berikut ini:

- 1. Level of Service yang diukur pada software PTV Vissim adalah kondisi arus lalu lintas yang dipengaruhi oleh volume lalu lintas, kecepatan kendaraan, tundaan kendaraan dan panjang antrian kendaraan yang ada di simpang.
- 2. Hasil analisis pemodelan menggunakan software Vissim pada tabel di atas maka dapat diambil kesimpulan bahwa skenario 1 adalah skenario terbaik, hasil yang didapatkan dari percobaan pada skenario 1 dengan merubah urutan fase dan waktu siklus dapat disimpulkan bahwa dengan skenario tersebut tundaan (VehDelay) rata-rata pada simpang menurun menjadi 85,33det/skr dari kondisi eksisting sebesar 139,35det/skr.
- 3. Hasil dari pemodelan Simpang Menukan pada kondisi skenario 1 dengan cara merubah urutan fase pada lengan Barat dan Utara, yaitu dengan menjalankan kendaraan secara bersamaan tetapi dilarang untuk berbelok kanan didapatkan nilai tundaan (VehDelay) ratarata sebesar 85,33det/skr dan tingkat pelayanan simpang (*Level of Service*) rata-rata berupa E (buruk).
- 4. Hasil dari pemodelan Simpang Menukan pada kondisi skenario 2 dengan cara merubah geometrik jalan pada ruas D.I Panjaitan pada lengan Utara, yakni menambah lebar Jalan D.I Panjaitan pada lengan Barat, dari kondisi eksisting lebar pendekat 12 m menjadi 16 m didapatkan nilai tundaan (VehDelay) rata-rata sebesar 108,55det/skr dan tingkat pelayanan simpang (Level of Service) rata-rata berupa F (buruk sekali).
- 5. Setelah ketiga skenario dilakukan maka skenario terbaik yang dapat diterapkan pada Jalan P.M Noor dan D.I Panjaitan untuk dapat meningkatkan kualitas pelayanan simpang adalah skenario 1.

Acknowledgements

This work was supported and partially funded by Universitas Muhammadiyah Kalimantan Timur (UMKT) grant no PPI-001.

References

- [1] Achmad Zultan M, Daud Nawir, & Ariani. (2018, April) Jurnal Borneo Saintek, Volume 1, Nomor 2, 27-33.
- [2] Aldi Dwi Mawardi (2020). Analisis Pengaruh Hambatan Samping Terhadap Penggunaan Lahan Dan Kinerja Jalan Raya Kaligawe Kota Semarang (Jl. Raya Kaligawe Km 2 Km 5).
- [3] Anonim. (2003). Profil Daerah Kabupaten dan Kota. Badan Pusat Statistik Kota Surabaya. 2019 Banyaknya Penduduk dan Kepala Keluarga Kecamatan BPS Kota Surabaya.
- [4] Budi, S., Sihite, G., Indriastuti, A. K., & Priyono, Y. (2017)
- [5] Departemen Pekerjaan Umum, 1997, Manual Kapasitas Jalan Indonesia, Jendral Bina Marga
- [6] Departemen Pekerjaan Umum. 2014. PKJI. Direktorat Jenderal Bina Marga.
- [7] Departemen Perhubungan. 2009. Undang-Undang Nomor 22 Tahun 2009 Tentang Lalu Lintas dan Angkutan Jalan. Jakarta.
- [8] Fadriani, H., Hidayat, I., Adinda, N. R., Haris, S., Mahardika, A. G., & Nuryono, B. (2021). Analysis of Unsignalized Intersection Using PKJI 2014 Method (Intersection of Jalan Sukajadi—Jalan Sukawangi-Jalan Sindang Sirna, Bandung). Journal of Physics: Conference Series, 1764(1).
- [9] Iskandar Hikmat (2009), Pedoman Kapasitas Jalan Indonesia 2014, Bandung
- [10] Khofifah. (2023, September). Pengaruh Hambatan Samping Terhadap Kinerja Jalan Jalan Ahmad Yani Bangil. Jurnal Studi Sains Dan Teknik, Volume 1 No. 1, 36-45.
- [11] Kota Samarinda Dalam Angka BPS. (2023). Data Kependudukan Wilayah Samarinda.
- [12] Munawar, A. (2004). Manajemen Lalu Lintas Perkotaan. Yogyakarta: Beta Offset.
- [13] Mohammad Hilman Nugraha, Thahir Sastrodiningrat, & Mudjiyono. (2022).
- [14] Novia Wikayanti, Heri Azwansyah, & Nurlaily Kadarini. (2018).
- [15] Pedoman Kapasitas Jalan Indonesia. (Tahun 2014).
- [16] Peraturan Menteri PU No. 19/PRT/M/2011. Tentang Persyaratan Teknis Jalan dan Kriteria Perencanaan Teknis Jalan. 15 December 2011. Berita Negara Republik Indonesia Tahun 2011 Nomor 900. Jakarta.
- [17] Sutedjo, B. (2012). Dasar Dasar Rekayasa Transportasi. Bandung.
- [18] Tamin O. Z. 2000, "Perencanaan Dan Pemodelan Transportasi", Penerbit ITB Bandung
- [19] Wikrama, J. A. A. N. Analisis Kinerja Simpang Bersinyal (Jalan Teuku Umar Barat-Jalan Gunung Salak). Jurnal Ilmiah Teknik Sipil, Denpasar.
- [20] Kota Samarinda Dalam Angka BPS. (2023). Data Kependudukan Wilayah Samarinda.