PENGARUH KETEBALAN SPESIMEN TERHADAP NILAI KOEFISIEN PENYERAPAN SUARA MATERIAL KOMPOSIT SERBUK GERGAJI
Main Article Content
Abstract
This study aims to determine the effect of specimen thickness on the sound absorption coefficient (SAC) of composite materials made from sawdust. Sawdust was made into a composite material with a volume fraction variation of 30:70 with thickness variations of 25 mm, 30 mm, and 40 mm. The samples were tested at frequencies of 200–1600 Hz using a type 4206 impedance tube with two microphones according to ASTM E1050 standards. Based on the test results, it was found that the material with a thickness of 40 mm (T40) achieved the highest SAC value with an α value of 0.18 at a frequency of 1200 Hz. It can be concluded that the sound absorption coefficient (SAC) value of the sawdust composite material increases with the thickness of the material, especially at high frequencies, because the increase in material thickness allows for more effective interaction between sound waves and the porous structure, thereby enhancing sound energy dissipation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
ASTM E 1050. (1998). Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system. American Society for Testing of Materials, C, 1–12.
Boopathy Krishnasamy Nandhakumar Shanmugam, A. S. S. S. S. S. R. G. Y. A. (2024). Sound-absorbing and thermal insulating properties of natural coir/jute hybrid composites for functional materials. Journal of Engineered Fibers and Fabrics. https://doi.org/10.1177/15589250241270522
Çelikel, D. C., & Babaarslan, O. (2017). Effect of bicomponent fibers on sound absorption properties of multilayer nonwovens. Journal of Engineered Fibers and Fabrics, 12(4), 15–25. https://doi.org/10.1177/155892501701200403
Fangueiro, R., Velosa, J. C., Macieira, M., & Mendonça, P. (2011). Characterization of porous acoustic materials applied to lightweight partition walls. https://api.semanticscholar.org/CorpusID:136139168
Herwandi, H., & Napitupulu, R. (2017). Pengaruh Peningkatan Kualitas Serat Resam Terhadap Kekuatan Tarik, Flexure Dan Impact Pada Matriks Polyester Sebagai Bahan Pembuatan Dashboard Mobil. Turbo Jurnal Program Studi Teknik Mesin, 4(2). https://doi.org/10.24127/trb.v4i2.72
Li Zou Aitian Zhang, Z. L. P. D. Y. G. (2024). The Sound Absorption Performance of Laser-Sintered Composite Biomimetic Wood Porous Structures. Polymers. https://doi.org/10.3390/polym16233290
Murdani, A., Hadi, S., & Amrullah, U. S. (2017). Flexural Properties and Vibration Behavior of Jute/Glass/Carbon Fiber Reinforced Unsaturated Polyester Hybrid Composites for Wind Turbine Blade. Key Engineering Materials, 748, 62–68. https://doi.org/10.4028/www.scientific.net/kem.748.62
Novak, C., Ule, H., & Kunio, J. (2011). Comparative Study of the ASTM E1050 Standard for Different Impedance Tube Lengths. Noise-Con 2011, 9.
Purwanto, P. (2017). THE NATURE COMPOSITE OF VETIVER FIBER AND THE WASTE OF POWDER SAWN AS AN SOUND ABSORPTION MATERIALS. None. https://doi.org/10.29313/ETHOS.V0I0.2259
R. Mageswaran L. S. Ewe, W. K. Y. Z. I. (2019). Acoustic Properties of Mixing Empty Fruit Bunch and Oil Palm Frond Natural Fibres. None. https://doi.org/10.35940/ijrte.d5119.118419
Rumaizah, C. Z., Azaman, F., Hasmizam, R. M., Asmadi, A., & Nor, M. A. A. M. (2019). Properties and Filtration Performance of Porous Clay Membrane Produced Using Sawdust as Pore Forming Agent. Key Engineering Materials, 821, 337–342. https://doi.org/10.4028/www.scientific.net/kem.821.337
Sasria, N. (2022). Composite Manufacturing of Coir Fiber-Reinforced Polyester as a Motorcycle Helmet Material. JMPM (Jurnal Material Dan Proses Manufaktur), 6(1). https://doi.org/10.18196/jmpm.v6i1.13756
Stasiak, M., Molenda, M., Bańda, M., & Gondek, E. (2015). Mechanical Properties of Sawdust and Woodchips. Fuel, 159, 900–908. https://doi.org/10.1016/j.fuel.2015.07.044
Veeraprabahar Jawahar Mohankumar Gabriel, S. S. S. S. (2023). Sustainable waste cotton and pigeon pea stalk fibers composite materials for acoustics and thermal properties. Journal of Engineered Fibers and Fabrics. https://doi.org/10.1177/15589250231189814
Wicaksono, A., Djafar, Z., & Kusno, A. (2023). Sound Absorption Coefficient Analysis for Composite Made of Agricultural Waste. Materials Science Forum, 1091, 161–170. https://doi.org/10.4028/p-mo2395
Yu Mt Muhammad Ali, N. F. I. S. B. H. S. (2021). Marble Powder Blended Utilization Polyurethane as Soundproof Materials. None. https://doi.org/10.31572/INOTERA.VOL6.ISS1.2021.ID131
Yulita Nurbaiti A. Yulianto, U. N. (2022). The Natural Composite of Sawdust Teak as a Sound Absorption Materials Using The Resonator Space Method. Physics Education Research Journal. https://doi.org/10.21580/perj.2022.4.1.8601