EVALUASI SENTIMEN PENGGUNA TERHADAP APLIKASI BANK SAQU DENGAN METODE ALGORITMA NAÏVE BAYES

Main Article Content

Rakha Adhiyasya
Sry Intan Simanjuntak
Aprida Bertha Bali
Muhammad Farhan Fadholi

Abstract

Studi ini bermaksud untuk mengevaluasi sentimen pengguna mengenai aplikasi Bank Saqu dengan memakai pendekatan komparasi algoritma Naïve Bayes. Evaluasi sentimen merupakan langkah-langkah guna mengenali dan mengklasifikasikan pendapat dan perasaan pengguna ke dalam kategori positif, negatif, atau netral berdasarkan ulasan yang diberikan. Algoritma Naïve Bayes dipilih karena efisiensinya dalam memproses data teks serta kemampuannya memberikan hasil klasifikasi yang kompetitif. Kumpulan data yang dimanfaatkan dalam kajian ini berasal dari tinjauan pemakai aplikasi Bank Saqu yang diperoleh melalui platform digital. Proses penelitian melibatkan tahap praproses data, seperti pembersihan teks, stemming, dan tokenisasi, untuk memastikan kualitas data yang dianalisis. Selanjutnya, dilakukan perbandingan kinerja beberapa bentuk algoritma Naïve Bayes, seperti Multinomial, Bernoulli, dan Gaussian, berdasarkan metrik evaluasi seperti akurasi, presisi, recall, dan F1-score. Temuan riset mengindikasikan bahwa algoritma Naïve Bayes sanggup mengelompokkan opini pemakai dengan tingkat keakuratan  yang signifikan. Varian algoritma tertentu menunjukkan kinerja yang lebih unggul dalam menangani dataset yang tidak seimbang. Temuan ini diperkirakan mampu mendukung pembuat perangkat lunak Bank Saqu dalam mengerti pandangan konsumen dan meningkatkan layanan berdasarkan hasil analisis sentimen.


 


            This study aims to evaluate user sentiment regarding the Bank Saqu application using a comparative approach of the Naïve Bayes algorithm. Sentiment evaluation involves steps to recognize and classify users' opinions and feelings into categories such as positive, negative, or neutral based on the reviews provided. The Naïve Bayes algorithm was chosen due to its efficiency in processing text data and its ability to deliver competitive classification results. The data used in this study is sourced from reviews of the Bank Saqu application obtained through digital platforms. The research process includes data preprocessing stages, such as text cleaning, stemming, and tokenization, to ensure the quality of the data being analyzed. A comparison of the performance of several Naïve Bayes algorithm variants, such as Multinomial, Bernoulli, and Gaussian, is then conducted based on evaluation metrics like accuracy, precision, recall, and F1-score. The findings indicate that the Naïve Bayes algorithm can classify user opinions with a significant level of accuracy. Certain algorithm variants show superior performance in handling imbalanced datasets. These findings are expected to assist the developers of the Bank Saqu application in understanding customer views and improving services based on sentiment analysis results.

Article Details

How to Cite
Adhiyasya, R., Simanjuntak, S. I., Bali, A. B., & Fadholi, M. F. (2025). EVALUASI SENTIMEN PENGGUNA TERHADAP APLIKASI BANK SAQU DENGAN METODE ALGORITMA NAÏVE BAYES. Kohesi: Jurnal Sains Dan Teknologi, 7(1), 71–80. https://doi.org/10.3785/kohesi.v7i1.11061
Section
Articles
Author Biographies

Rakha Adhiyasya, Universitas Binasarana Informatika

Fakultas Teknik Informatika Universitas Binasarana Informatika

Sry Intan Simanjuntak, Universitas Binasarana Informatika

Fakultas Teknik Informatika Universitas Binasarana Informatika

Aprida Bertha Bali, Universitas Binasarana Informatika

Fakultas Teknik Informatika Universitas Binasarana Informatika

Muhammad Farhan Fadholi, Universitas Binasarana Informatika

Fakultas Teknik Informatika Universitas Binasarana Informatika

References

• Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. Retrieved from https://www.journals.elsevier.com/foundations-and-trends-in-information-retrieval

• Zhang, L., & Zhang, L. (2019). Sentiment analysis using Naïve Bayes classifiers. International Journal of Computer Science and Information Security, 17(6), 100–104. Retrieved from https://www.ijcsis.org

• Kumar, P., & Gupta, S. (2020). A survey of text mining techniques for sentiment analysis. International Journal of Advanced Research in Computer Science, 11(5), 122–126. Retrieved from https://www.ijarcs.info

• Setiawan, R., Nugroho, Y., & Wibowo, A. (2021). Comparative study of Naïve Bayes and Support Vector Machine for sentiment analysis of product reviews. International Journal of Advanced Computer Science and Applications, 12(3), 1–9. Retrieved from https://www.ijacsa.thesai.org

• Rahman, A., & Dewi, L. (2020). Sentiment analysis on user reviews using machine learning: A case study of mobile applications. Journal of Information Technology and Computer Science, 6(2), 23–31. Retrieved from https://www.jitcs.org

• Hassan, A., & Raza, M. (2017). Sentiment analysis of product reviews using machine learning techniques. Journal of Computer Science, 13(7), 319–325. Retrieved from https://www.journals.elsevier.com/journal-of-computer-science

• Al-Smadi, M., & Al-Husban, M. (2020). Sentiment analysis of mobile applications reviews using machine learning algorithms. International Journal of Computer Applications, 175(4), 6–13. Retrieved from https://www.ijcaonline.org

• Reddy, K. M., & Prasad, S. V. (2018). Sentiment analysis of reviews on e-commerce platforms using Naïve Bayes classifier. Journal of Engineering Research and Technology, 11(3), 218–223. Retrieved from https://www.jertonline.com

• Rojas, C., & Martínez, A. (2019). A comparison of Naïve Bayes and Logistic Regression in sentiment analysis of social media data. Journal of Machine Learning Research, 20(1), 98–111. Retrieved from https://www.jmlr.org

• Gupta, S., & Agarwal, R. (2020). Sentiment analysis using machine learning algorithms for social media data. Journal of Data Science and Analytics, 2(4), 245–255. Retrieved from https://www.journals.elsevier.com/journal-of-data-science-and-analytics

• World Bank. (2022). The rise of mobile banking in developing economies. World Bank Group. Retrieved from https://www.worldbank.org

• Muthu, M. V., & Chitra, S. (2020). Applications of sentiment analysis for customer feedback in mobile apps. Journal of Information and Knowledge Management, 19(2), 1–11. Retrieved from https://www.inderscience.com