IMPLEMENTASI PERBANDINGAN YOLO V8 DAN YOLO V11 DALAM PENERAPAN TATA TERTIB BERPAKAIAN DI LINGKUNGAN KAMPUS STUDI KASUS UNIVERSITAS ESA UNGGUL KAMPUS BEKASI

Main Article Content

Muhammad Febri Yudhi
Nixon Erzed
Yulhendri Yulhendri
Jefry Sunupurwa Asri

Abstract

The consistent enforcement of dress code regulations is an important approach to creating an ethical campus environment. This study aims to develop an automated dress code violation detection system utilizing artificial intelligence technology with the the YOLOv8 and YOLOv11 algorithm algorithm. The system is designed to detect categories of compliant and non-compliant clothing in real-time through cameras and provide automatic notifications when violations are detected. The model, trained with a dataset of clothing images, is evaluated using metrics such as precision, recall, and mean Average Precision (mAP). Training results show that the model achieves high accuracy in detecting dress code violations, supporting the goal of enhancing monitoring efficiency and reducing the violation rate. At Esa Unggul University, Bekasi Campus, this system also contributes to modernizing campus management through technology, fostering the creation of a disciplined academic environment aligned with the values of educational institutions.

Article Details

How to Cite
Yudhi, M. F., Erzed, N., Yulhendri, Y., & Asri, J. S. (2025). IMPLEMENTASI PERBANDINGAN YOLO V8 DAN YOLO V11 DALAM PENERAPAN TATA TERTIB BERPAKAIAN DI LINGKUNGAN KAMPUS STUDI KASUS UNIVERSITAS ESA UNGGUL KAMPUS BEKASI. Kohesi: Jurnal Sains Dan Teknologi, 7(3), 91–100. https://doi.org/10.3785/kohesi.v7i3.11680
Section
Articles
Author Biographies

Nixon Erzed, Universitas Esa Unggul

Teknik Informatika, Universitas Esa Unggul

Yulhendri Yulhendri, Universitas Esa Unggul

Teknik Infromatika, Universitas Esa Unggul

Jefry Sunupurwa Asri, Universitas Esa Unggul

Teknik Informatika, Universitas Esa Unggul

References

Firdaus, A. R., Kharisma, O. B., Ismaredah, E., Sains, A. F., Teknologi, D., Elektro, T., … Pekanbaru, I. (2024). Deteksi Kode Etik Berpakaian pada Area Kampus Menggunakan YoloV8. Journal of Information System Research (JOSH), 5(2), 450–458.

Jamaludin, F., Pambudi, A., Informatika, T., Sukabumi, U. M., Busana, D., Data, A., & Model, E. (2024). PENERAPAN YOLO ( YOU ONLY LOOK ONCE ) UNTUK DETEKSI ETIKA, 8(5), 10623–10629.

Ismail Arianto, B., & Zuliarso, E. (2023). Implementasi Metode YOLO pada Deteksi Pakaian Keselamatan yang Lengkap di Proyek Kontruksi. Ranah Research : Journal of Multidisciplinary Research and Development, 6(1), 56–63. https://doi.org/10.38035/rrj.v6i1.795

Hayati, N. J., Singasatia, D., & Muttaqin, M. R. (2023). Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 12(2), 91–99. https://doi.org/10.34010/komputa.v12i2.10654

[5] Mulyana, D. I., & Sahroni. (2024). Optimasi Penerapan Algoritma Yolo dan Data Augmentasi dalam Klasifikasi Pakaian Tradisional Kebaya. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 8(1), 188–193. https://doi.org/10.35870/jtik.v8i1.1446.

Wulanningrum, R., Handayani, A. N., & Wibawa, A. P. (2024). Perbandingan Instance Segmentation Image Pada Yolo8. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(4), 753–760. https://doi.org/10.25126/jtiik.1148288

Hafid, M. A., & Kurniawan, M. A. (2024). Deteksi Akun Kaggle Bot Menggunakan Linear Regression, 6(2), 449–459. https://doi.org/10.33650/jeecom.v4i2

Mira, S., Gudiato, C., & Chan, B. (2023). Computer Vision dan YOLO Menggali Potensi Computer Vision dan Implementasi YOLO untuk Pertanian Pintar. Uwais Inspirasi Indonesia.

B. M. Wantania, B., R.U.A. Sompie, S., & D. Kambey, F. (2020). Penerapan Pendeteksian Manusia Dan Objek Dalam Keranjang Belanja Pada Antrian Di Kasir. Jurnal Teknik Informatika, 15(2), 101–108.

Pressman, R. S., & Maxim, B. R. (2015). Software engineering: A practitioner's approach (Ninth ed.). McGraw-Hill.

B, A. A., Amin, A., & Kasrani, M. W. (2021). Penerapan Metode Yolo Object Detection V1 Terhadap Proses Pendeteksian Jenis Kendaraan Di Parkiran. Jurnal Teknik Elektro Uniba (JTE UNIBA), 6(1), 194–199. https://doi.org/10.36277/jteuniba.v6i1.130

Sharma, A., Kumar, V., & Longchamps, L. (2024). Smart Agricultural Technology Faster R-CNN models for detection of multiple weed species, 9(October).