ANALISIS SENTIMEN TWITTER TERHADAP NYAMUK WOLBACHIA MENGGUNAKAN METODE LSTM DENGAN PENDEKATAN NLTK
Main Article Content
Abstract
Dengue Hemorrhagic Fever (DHF) is one of the major health issues in Indonesia. One of the preventive measures is the Wolbachia mosquito program. However, the implementation of this program has sparked various reactions from the public, which can be observed through social media, particularly Twitter. This study aims to analyze public sentiment towards Wolbachia mosquitoes using the Long Short-Term Memory (LSTM) method and the Natural Language Toolkit (NLTK) approach. Data was collected through a crawling process from Twitter using keywords related to "Wolbachia mosquitoes." Preprocessing was then carried out using NLTK, including tokenization, stopword removal, and stemming. The data was manually labeled into positive, negative, and neutral sentiment categories. The LSTM model was used for sentiment classification with the best parameters, including 100 neurons, a learning rate of 0.001, a sigmoid activation function, a batch size of 32, and 7 epochs. The results indicate that the LSTM model used was able to classify sentiment with an accuracy of 95%, precision of 94%, recall of 97%, and an F1-score of 95%. This demonstrates that the LSTM method with the NLTK approach is effective in analyzing public sentiment towards
Downloads
Article Details
References
A. Ramadhana, Perbedaan Tingkat Pengetahuan Tentang Program Wolbachia Pada Masyarakat Umum Antara Kabupaten Sleman dan Kota Yogyakarta. PhD thesis, Universitas Muhammadiyah Yogyakarta, 2024.
R. Ramdhani, Analisis kestabilan global pada model dinamik nyamuk terinfeksi wolbachia. PhD thesis, UIN Sunan Gunung Djati Bandung, 2018.
R. Hidayat, A. B. Hakim, and R. Nugraha, “Perbandingan metode naïve bayes dan decision tree c4. 5 untuk analisis sentimen produk es teh indonesia di media sosial twitter,” Jurnal SISKOM- KB (Sistem Komputer dan Kecerdasan Buatan), vol. 7, no. 2, pp. 88–98, 2024.
S. K. Nasib, F. I. Pammus, et al., “Comparison of feature selection based on computation time and classification accuracy using support vector machine,” Indonesian Journal of Applied Research (IJAR), vol. 4, no. 1, pp. 63–74, 2023.
R. I. Firdausi, R. S. Bestari, L. M. Dewi, and N. Nurhayani, “Peran bakteri wolbachia terhadap pengendalian vektor demam berdarah dengue (dbd) aedes aegypti,” in Prosiding University Research Colloquium, pp. 513–521, 2021.
W. A. Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis sentimen cyberbullying pada komentar instagram dengan metode klasifikasi support vector machine,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 11, pp. 4704–4713, 2018.
F. F. Rachman and S. Pramana, “Analisis sentimen pro dan kontra masyarakat indonesia tentang vaksin covid-19 pada media sosial twitter,” Indonesian of Health Information Management Journal (INOHIM), vol. 8, no. 2, pp. 100–109, 2020.
M. I. H. A. D. Akbari, A. Novianty, and C. Setianingsih, “Analisis sentimen menggunakan metode learning vector quantization,” eProceedings of Engineering, vol. 4, no. 2, 2017.
M. Wang and F. Hu, “The application of nltk library for python natural language processing in corpus research,” Theory and Practice in Language Studies, vol. 11, no. 9, pp. 1041–1049, 2021.
R. Khan, P. Shrivastava, A. Kapoor, A. Tiwari, A. Mittal, et al., “Social media analysis with ai: sentiment analysis techniques for the analysis of twitter covid-19 data,” J. Crit. Rev, vol. 7, no. 9,
pp. 2761–2774, 2020.
M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis sentimen tweet covid-19 menggunakan word embedding dan metode long short-term memory (lstm),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 11, pp. 5120–5127, 2021.
R. A. Rudiyanto, E. B. Setiawan, et al., “Sentiment analysis using convolutional neural network (cnn) and particle swarm optimization on twitter,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 2, pp. 188–195, 2024.
M. D. Al Fahreza, A. Luthfiarta, M. Rafid, and M. Indrawan, “Analisis sentimen: Pengaruh jam kerja terhadap kesehatan mental generasi z,” Journal of Applied Computer Science and Technology, vol. 5, no. 1, pp. 16–25, 2024.
A. A. Pratiwi and M. Kamayani, “Perbandingan pelabelan data dalam analisis sentimen kurikulum proyek di platform tiktok: Pendekatan naïve bayes,” Jurnal Eksplora Informatika, vol. 14, no. 1, pp. 96–107, 2024.
R. Akbar, R. Santoso, and B. Warsito, “Prediksi tingkat temperatur kota semarang menggunakan metode long short-term memory (lstm),” Jurnal Gaussian, vol. 11, no. 4, pp. 572–579, 2023.
A. S. Widagdo, K. N. Qodri, F. E. N. Saputro, N. A. R. Putri, et al., “Analisis sentimen mobil listrik di indonesia menggunakan long-short term memory (lstm),” JURNAL FASILKOM, vol. 13, no. 3,
pp. 416–423, 2023.
H. F. Fadli and A. F. Hidayatullah, “Identifikasi cyberbullying pada media sosial twitter menggunakan metode lstm dan bilstm,” Automata, vol. 2, no. 1, 2021.