PERBANDINGAN METODE ITERASI GAUSS-SEIDEL DAN JACOBI IMPLEMENTASI DAN SIMULASI MENGGUNAKAN MATLAB

Main Article Content

Ardicha Appu Sianturi
Dewi Fortuna Silaban
Riski Melanton Banjarnahor
Wenny Susanty Nainggolan

Abstract

The system of linear equations is one of the main foundations in various science and technology applications, which is often solved using iterative methods such as Jacobi and Gauss-Seidel methods. This study aims to compare the two methods in terms of convergence speed, solution stability, and computational time efficiency. Simulations were conducted using MATLAB with a quantitative experimental approach on a diagonally dominant system of linear equations, which confirmed the convergence potential of the iterative methods. The implementation of the algorithm involves using the same initial values for both methods, with the process iterating until it reaches the convergence criterion or maximum limit of iterations. Simulation results show that the Gauss-Seidel Method is superior in convergence speed, requiring only 11 iterations to reach a solution, compared to 21 iterations in the Jacobi Method. In addition, the Gauss-Seidel Method shows better stability on the tested system, while the Jacobi Method has an advantage in the flexibility of parallel implementation. These findings provide important insights for users to choose numerical methods that suit specific needs, both in academic contexts and practical applications, especially for solving systems of linear equations in modern computing.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sianturi, A. A., Silaban, D. F., Banjarnahor, R. M., & Nainggolan, W. S. (2024). PERBANDINGAN METODE ITERASI GAUSS-SEIDEL DAN JACOBI IMPLEMENTASI DAN SIMULASI MENGGUNAKAN MATLAB. Trigonometri: Jurnal Matematika Dan Ilmu Pengetahuan Alam, 5(2), 21–30. https://doi.org/10.3483/trigonometri.v5i2.7863
Section
Articles
Author Biographies

Ardicha Appu Sianturi, Universitas Negeri Medan

Program Studi Statistika, Universitas Negeri Medan, Medan, Indonesia

Dewi Fortuna Silaban, Universitas Negeri Medan

Program Studi Statistika, Universitas Negeri Medan, Medan, Indonesia

Riski Melanton Banjarnahor, Universitas Negeri Medan

Program Studi Statistika, Universitas Negeri Medan, Medan, Indonesia

Wenny Susanty Nainggolan, Universitas Negeri Medan

Program Studi Statistika, Universitas Negeri Medan, Medan, Indonesia

References

A. Bakari and I. Dahiru, “Comparison of Jacobi and Gauss-Seidel Iterative Methods for the Solution of Systems of Linear Equations,” Asian Res. J. Math., vol. 8, no. 3, pp. 1–7, 2018, doi: 10.9734/arjom/2018/34769.

H. HarpinderKaur, “Convergence of Jacobi and Gauss-Seidel Method and Error Reduction Factor,” IOSR J. Math., vol. 2, no. 2, pp. 20–23, 2012, doi: 10.9790/5728-0222023.

A. Sunarto, T. Matematika, and I. Bengkulu, “Komputasi Numerik Metode Iteratif Half-Sweep Preconditioned Gauss-Seidel Untuk Memecahkan Persamaan Resepan Pecahan Waktu Numerical Computation Half-Sweep Preconditioned Gauss-Seidel Method To Solve Prescription Equations in Fraction of Time,” J. Inf. Technol. Comput. Sci., vol. 4, no. 2, p. 2021, 2021.

L. Maydawati, “Sistem Persamaan Linear Dua Variabel dengan Metode Subsitusi dan Eliminasi,” vol. 02, no. 01, pp. 46–50, 2024.

B. Amelia, “Sistem Persamaan Linear dengan Metode Gauss Seidel,” vol. 02, no. 02, pp. 132–136, 2024.

I. K. A. Atmika, Metode Numerik, vol. 1, no. August. 2016.

A. Ramadhan and A. Sirait, “Analisis Konvergensi Metode Iterasi Jacobi dalam Menyelesaikan Persamaan Sistem Linier Matriks,” Dunia Ilmu, vol. 3, no. 1, pp. 1–13, 2023.

B. Widya Efriani , Syamsudhuha, “Metode Iterasi Jacobi Dan Gauss-Seidel Prekondisi Untuk Menyelesaikan Sistem Persaman Linear Dengan M -Matriks,” Jom Fmipa, vol. 1, no. 2, pp. 408–416, 2014.

I. Rohmah et al., “Implementation of Gauss-Seidel Iteration Method To Solve Complex Linear Equation System,” pp. 2007–2020, 2007.

A. Ramadhan and A. Sirait, “Generalisasi Metode Gauss-Seidel Untuk Menyelesaikan Sistem Persamaan Linear,” Jom Fmipa, vol. 1, no. 2, pp. 351–358, 2014.

Onard, “JURNAL Christofel S. Sualang _060213067_-1,” 2015.

D. K. Salkuyeh, “Generalized Jacobi and Gauss-Seidel Methods for Solving Linear System of Equations,” Numer. Math. A J. Chinese Univ., vol. 16, no. 2, pp. 164–170, 2007, [Online]. Available: http://www.global-sci.org/nm/volumes/v16n2/pdf/660324.pdf

M. F. Sherman, R. J. ACSmith, and N. C. Sherman, “X 2 X 2,” vol. 2, pp. 719–728, 1983.

B. Pu and X. Yuan, “The alternate iterative Gauss-Seidel method for linear systems,” J. Phys. Conf. Ser., vol. 1411, no. 1, 2019, doi: 10.1088/1742-6596/1411/1/012008.

E. Wandalia, “MATRIKS,” vol. 3, no. 1, pp. 1–13, 2023.